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Social network is becoming an increasingly popular media for information sharing. More
and more people are interacting with others via major social network sites such as
Twitter and Flickr. An important aspect of a social network is its capability in efficiently
spreading content, not only within a small circle but also in the whole network.
However, most existing methods for recommending friends in social networks only aim
at achieving high recommendation success rate. The network grown from such recommen-
dations is not optimized for content spread. In this paper, we propose a novel friend recom-
mendation method ACR-FoF (algebraic connectivity regularized friends-of-friends) that
considers both success rate and content spread in the network. Using the algebraic connec-
tivity of a connected network to estimate its capability for spreading contents, our recom-
mendation method naturally extends existing friend recommendation algorithms such as
FoF to achieve both recommendation relevance and content spread in a social network.
Experimental results on simulated and real social network data sets show that our method
can significantly improve content spread in a social network with only a very tiny compro-
mise on friend recommendation success rate.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The past several years witnessed an explosive growth of social network sites and applications. People are increasingly
relying on various social networks for sharing contents and interacting with each other. Popular sites such as Twitter and
Facebook are seeing a great amount of tweets or posts generated by active users all around the world every day. Social media
nowadays has become one of the most important information sources [33] and we intuitively expect information spread in a
viral fashion in a social network.

However, recent works indicate information or content in social networks may not spread as efficiently as people believe.
Cha et al. explain in [3] the formation of content locality in Flickr as they observed from a Flickr dataset ranging over 104
consecutive days, which shows that even popular photos many only circulate within a small clique and result in a quick
burnout in content spread. Bakshy et al. echo in [2] with similar discoveries by noting increasing homophily in social net-
works. They point out that individuals with similar characteristics tend to associate with each other, leading to greater
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opportunities of aligned information source and less possibilities for accessing novel and diverse information. Homophily not
only impairs people’s motivation for sharing contents, but also may slow down audience growth in social networks.

On the other hand, it is generally believed that the value and revenue of a social network are closely related with its
capability in efficiently spreading contents. Content spreading plays an important role in motivating users to express their
opinions through the social network because the goal of sharing information is for others to receive [35,21]. Quicker infor-
mation dissemination can drive up user engagement and in turn improve user retention. Wide outreach of contents in a
social network also improves the access to novel information for users. Most social network sites are now offering connec-
tivity boosting features such as ‘‘friend recommendation’’ to users to improve content spread. However, traditional friend
recommendation methods such as friends-of-friends (FoF) mainly consider number of common neighbors or similarity of
user profiles in recommending new friends. One drawback of these methods is that they usually increase connectivity only
within a small range of neighborhood and may not necessarily lead to improved content spread capability of the whole
network.

Although connecting unknown people seems to be an effective method in discovering novel contents and reducing homo-
phily in social networks, most users lack enough motivation to contact unknown people and thus making the recommenda-
tions fail. Considering the limitations of these traditional friend recommendation methods, Chaoji et al. recently proposed in
[4] a connection recommendation algorithm that can also improve content spread in a social network. A two-step process is
used in their recommendation by first selecting a candidate set of similar users based on the number of common neighbors,
similarity of user profiles, etc. and then recommending a certain number of friends in the social network (no more than k
friends for each user) that maximize the content spread. The limitation of their method is that the user is not likely to accept
all the k recommended friends, which makes the added connections less optimal for content spread. Also the relatively high
computational cost of their algorithm makes it less scalable in practical applications. But as the first attempt to incorporate
content spread capability into friend recommendation, their work inspires us to seek solutions that better balance the two
objectives.

The content spread in a network is usually modeled as a stochastic process, e.g. independent cascade (IC) model [17]. An
edge eðu;vÞ in this model is associated with a probability pðu; vÞ, which is the possibility in step t þ 1 the node u indepen-
dently propagate to node v the content it receives in step t. Metrics based on IC model, such as the expected amount of con-
tent received by nodes [4], are used to evaluate the content spread. But directly optimizing such metric is NP-hard [4]. Even
approximation algorithms will incur expensive computational cost. Some existing approaches use the largest eigenvalue of
the Adjacency Matrix [31,26,29] to analyze or improve content spread in a network. In this paper, we use the algebraic con-
nectivity of a connected network’s Laplacian Matrix to improve its capability in spreading content. We think the algebraic
connectivity of a network is more closely related to its content spread capability than the largest eigenvalue of the adjacency
matrix, which is related more closely to the threshold of an epidemic contagion. Using the algebraic connectivity as a regu-
larizer, we develop a new friend recommendation algorithms called algebraic connectivity regularized friends-of-friends (ACR-
FoF), which effectively take into account both relevance and content spread in friend recommendation. We summarize the
major contributions as follows:

� To the best of our knowledge, this is the first time the algebraic connectivity of a network is used to optimize its content
spread capability.
� We propose a new evaluation metric EnPair (enhanced pairs) for evaluating improvement in content spread in social net-

works and the reduction in homophily.
� We develop a new friend recommendation algorithm ACR-FoF that considers both relevance and content spread in a

social network.

The rest of the paper is organized as follows: Section 2 introduces to the related works. Our new friend recommendation
algorithm is explained in Section 3. In Section 4, we present and discuss experiments and results. Finally, we conclude the
whole paper and present some directions for future work in Section 5.
2. Related works

Our work is related to information disseminations and recommendation in social networks. Here we briefly review these
related works.
2.1. Information dissemination

Study of information dissemination or content spread in social networks can be traced back to [27], in which Rogers
explains how new ideas spread via communication channels over time. He also analyzes how information spread transforms
the way people communicate and adopt new ideas. Some more recent works start exploiting combinatorial optimization in
minimizing the network diameter and the average shortest path distances [8,23]. However, since not all recommendations
will be accepted by users in practice, these algorithms will lead to a suboptimal solution in recommendation. We will pro-
vide more analysis into this issue in Section 3.
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A hot topic in information dissemination is influence maximization in social contagion. Many new models and algorithms
have been proposed to find a small subset of seed nodes in a social network that maximize the spread of influence. Domingos
and Richardson model this diffusion process as a Markov random field and provide solutions based on greedy search and hill-
climbing search [9]. Kempe et al. study this diffusion process using both independent cascade (IC) model and linear threshold
model and propose greedy strategies for both models, with provable approximation guarantees showing the solutions are
within 63% of the optimal [17]. They further model the diffusion process with a decreasing cascade model in [18] and use
a greedy algorithm to find the most influential nodes. Chen et al. improve the greedy strategy over IC with degree discount
heuristic that drastically reduces the algorithm’s running time while maintains almost the same influence spread capability
in networks with a small propagation probability [7]. Although influence maximization problem aims to identifying a set of
nodes instead of recommending edges as we do in this paper, the diffusion models and algorithms for influence maximiza-
tion problem are of great value to our work.

Particularly relevant to our work are algorithms for information dissemination in a network using eigenvalue optimiza-
tion. Tong et al. propose in [29] novel methods to most effectively speedup or contain a contagion in a network by adding or
deleting k edges. They boil down the problem to the optimization of the largest eigenvalue of the adjacency matrix. This rela-
tion between the dissemination in a network and the largest eigenvalue of the adjacency matrix is explored in [31,26]. Both
works confirm that the largest eigenvalue of the adjacency matrix will determine whether a dissemination in a network will
become an epidemic.

2.2. Recommendation in social networks

With the growing popularity of social network applications, various recommendation systems emerge like mushrooms
after rain. These include recommending item ratings [34], tags [12], documents [14], friends [5,15], experts [21,13] and many
others in social networks. Various recommendation algorithms are exploited in these systems, ranging from the canonical
collaborative filtering [16], graph-based propagation [12,14], to the new list-wise probabilistic matrix factorization [22],
etc. The enthusiasm in this area is expected to last for the years to come as many new business models in social networks
are highly dependent on recommendation accuracy.

Among these recommendation systems, friend recommendation lies in the very core of a social network, as it essentially
determines how a social network might grow. Most of the existing friend recommendation approaches are based on the
similarity of user profiles, or the geographical vicinity or the number of common friends [5,15]. Some other works cast friend
recommendation as a link prediction problem by finding the most probable links among existing nodes [20,28]. More
recently, Dong et al. [10] and Yang et al. [32] take into consideration heterogeneous structures in social networks and achieve
better accuracy. Oyama et al. [25] find more links among nodes in different time frames and make recommendations by
combining this information in dynamic environments.

Most similar to our work is the friend recommendation method proposed by Chaoji et al. [4]. Their algorithm aims to
achieve both relevance and efficient content spread in a social network using a two-step process. Different from their
method, we develop a new one-step algorithm using algebraic connectivity regularization in friend recommendation. Our
algorithm alleviates the content locality problem by providing more access to novel information, as well as enhances content
spread by optimizing network connectivity.

3. Recommendation mechanism

The objective of friend recommendation in a social network is to attach new edges between unconnected nodes in the
network. Most previous studies focus on improving the success rate in friend recommendation while ignoring the impact
on the network structure. Our work in this paper aims to improve both the content spread capability of a social network
and recommendation success rate.

3.1. Definition

In this paper, a social network is modeled as an undirected graph G ¼ ðV ; EÞwhere V stands for the set of user nodes and E
connections between them. G can be represented as an adjacency matrix W in which:
Wi;j ¼
1 : Vi and Vj are friends
0 : otherwise

�
ð1Þ
W obviously is a symmetric matrix, i.e. Wi;j ¼Wj;i. A path Pathi;j exists if there are a sequence of edges connecting Vi and Vj

and we denote
Pathi;j ¼ fVi;Vl1 ; . . . ;Vlm ;Vjg ð2Þ
The length of a path Pathi;j is the number of edges that the path uses: jPathi;jj ¼ mþ 1. The distance between Vi and Vj is the
length of the minimum path between them, i.e.: Disti;j ¼minðjPathi;jjÞ. We define the distance from a node to itself to be 0.
The diameter of a graph G is then defined as follows:
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DðGÞ ¼maxðDisti;jÞ ð3Þ
Note that there may exist multiple node pairs in a graph with distance equaling to its diameter, which are termed as external
pairs in [30].

The mean distance �qðGÞ of a graph G is the average distance between distinct vertices of G. That is:
�qðGÞ ¼ 1
nðn� 1Þ

Xn

i¼1

Xn

j¼1

Disti;j ð4Þ
We also define a candidate edge set E2 with E2 \ E ¼ ;. The objective of edge recommendation is to choose a set of edges
E0 � E2. We summarize the symbols used in Table 1.

3.2. Content spread metrics in a social network

Content spread in social networks has been a hot research issue. But few works exist on how we can measure the capabil-
ity of a social network in spreading contents. In this paper, we will focus on the topological aspect of a social network in
discussing its content spread capability. To comprehensively evaluate the capability of a social network in content spread,
we will use three metrics in this paper: (1) expected content spreading (ECS), as used in [4]; (2) network diameter; and
(3) enhanced pairs (EnPair), the number of node pairs whose content sharing probability is improved by adding new edges.
EnPair is a new evaluation metric we propose in this paper. We will show in the following discussions how these three met-
rics are interrelated. We start with the maximum probability path (MPP) proposed by Chen et al. [6]. MPP models the content
sharing probability Pi;j between two nodes i and j as a function of the distance between them:
Pi;j ¼ pDisti;j ð5Þ
where p is the probability of a message propagating from one node to its neighbors. Note that this uniform assignment of
probability is a simplified model for representing propagation among nodes. A more sophisticated model will use weighted
assignment of probability considering factors such as the node’s degree. We will leave weighted assignment to the future
work and focus on models based on uniform assignment in this paper. Based on MPP, we define the minimal propagation
probability LowPðGÞ in a social network G as follows:
LowPðGÞ ¼minðPi;jÞ ð6Þ
Since Pi;j ¼ pDisti;j and 0 < p < 1, Eq. (6) can be rewritten as:
LowPðGÞ ¼ pDðGÞ ð7Þ
where DðGÞ is the diameter of the social network. Although LowPðGÞ can be directly used as an important indicator for con-
tent spread, its value might be too small to be well represented in a computer. Thus we will use the diameter of the social
network DðGÞ as the metric for the minimal propagation probability in a social network.

Eq. (7) indicates that maximizing LowPðGÞ is equivalent to minimizing the diameter DðGÞ. However, minimizing the
diameter of a network is a challenging issue and the diameter DðGÞ is sometimes insensitive to network changes. Toueg
and Steiglize suggest an improvement by optimizing the number of external pairs in a network instead [30]. We present
an example in Fig. 1 and Table 2 to illustrate this method. Fig. 1 depicts a network with 21 nodes and 20 edges, and 12 exter-
nal pairs. Adding an edge a or b to a node pair i and j with Disti;j ¼ 2 (or a 2-hop edge for short), the diameter remains
unchanged. But as shown in Table 2, when adding the edge a, the number of external pairs is reduced to 7, while adding
the edge b the number of external pairs is reduced to 3, meaning that adding edge b is a better choice. The practical problem
with external pair optimization is it incurs a time complexity of Oðn5Þ, making an algorithm difficult to scale.

We define the second metric for content spread in a social network G, expected content spread (ECSðGÞ) as follows:
ECSðGÞ ¼ 1
n

Xn

i¼1

Xn

j¼1

Pi;j ð8Þ
ECSðGÞ represents average number of nodes who can receive the message sent by a node in the social network. We have the
following approximation for ECSðGÞ:
ECSðGÞ � 1
n

Xn

i¼1

Xn

j¼1

p�qðGÞ ¼ np�qðGÞ ð9Þ
where �qðGÞ is the mean distance of G. Eq. (9) shows that ECSðGÞ is closely related with the mean distance of G.
Although ECSðGÞ is generally a good indicator for content spread capability of a social network G, it may fail to distinguish

the homophily in a social network. We thus introduce the third metric, enhanced pairs (EnPair), to show the number of node
pairs whose content sharing probability is improved by adding new edges. The enhanced pairs for adding new edges X is
defined as follows:



Table 1
Symbols.

Symbol Definition and description

A Matrices
Ai;j The element at the ith row and the jth column of A
1 Vector with all ones
0 Vector with all zeros

G ¼ ðV ; EÞ The original graph
n The number of the nodes in the graph
Disti;j The shortest path length from node i to j
DðGÞ The diameter of G
�qðGÞ The mean distance of G
p The probability of one node sharing a message
Pi;j The content sharing probability between i and j
LowPðGÞ The minimal propagation probability of G
ECSðGÞ The expected content spread of G
EnPairðGÞ The number of enhanced node pairs
W The adjacent matrix
W2 The adjacent matrix for all 2-hop edges
L The Laplacian matrix
L2 The Laplacian matrix for all 2-hop edges
kiðAÞ The ith smallest eigenvalue of the matrix A
v iðAÞ The ith smallest eigenvector of the matrix A

Fig. 1. A connected network with 21 nodes and 20 edges. a and b are 2 candidate edges to be added.

Table 2
External pairs changed for Fig.1 added with one edge:

p
means this pair is still a diameter after add the given edge, while � means not.

No. External pair Diameter path Add a Add b

1 (1,13) 1-2-3-4-5-10-11-12-13
p �

2 (1,17) 1-2-3-4-5-14-15-16-17
p �

3 (1,21) 1-2-3-4-5-18-19-20-21 � �
4 (7,13) 7-6-3-4-5-10-11-12-13

p �
5 (7,17) 7-6-3-4-5-14-15-16-17

p �
6 (7,21) 7-6-3-4-5-18-19-20-21 � �
7 (9,13) 9-8-3-4-5-10-11-12-13

p �
8 (9,17) 9-8-3-4-5-14-15-16-17

p �
9 (9,21) 9-8-3-4-5-18-19-20-21 � �

10 (13,17) 13-12-11-10-5-14-15-16-17
p p

11 (13,21) 13-12-11-10-5-18-19-20-21 � p

12 (17,21) 17-16-15-14-5-18-19-20-21 � p

106 Z. Yu et al. / Information Sciences 309 (2015) 102–118
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EnPairðGnewÞ ¼ jfði; jÞjPGnew
i;j > PG

i;jgj ð10Þ
where Gnew ¼ ðV ; E [ XÞ.
It can be easily proven that if we add a new edge between 2-hop nodes i and j and there are x node pairs whose shortest

distance are reduced by 1, the mean distance will then be reduced by x=ðnðn� 1ÞÞ. This indicates the edge that reduces the
mean distance most is the edge that will produce the largest number of enhanced pairs.

3.3. Algebraic connectivity

The three content spread metrics are difficult to be optimized directly. Instead, we consider optimizing the algebraic con-
nectivity of a connected network to improve its content spread capability. Let G ¼ ðV ; EÞ be an undirected graph with n nodes
and m edges. The algebraic connectivity of G is the second-smallest eigenvalue of the Laplacian matrix of G. Given a graph
with n nodes and m undirected edges, for an edge l between node i and j, we define the edge vector al 2 Rn as ali ¼ 1; alj ¼ �1,
and other entries 0. Then we get the incidence matrix A 2 Rn�m with al being the l-th column. The Laplacian matrix L is the
n� n matrix:
L ¼ AAT ¼
Xm

l¼1

alaT
l ð11Þ
Obviously, L is positive semidefinite and L1 ¼ 0, with 1 being the vector of all ones. Let k1 6 k2 6 � � � 6 kn be the eigenvalues
of L. The second smallest eigenvalue k2 is called the algebraic connectivity of graph G. Previous studies have shown that the
algebraic connectivity can be used as an upper bound on the diameter and the mean distance of graph G as follows [24]:
DðGÞ 6 2
Dþ k2

4k2
lnðn� 1Þ

� �
ð12Þ

�qðGÞ 6 n
n� 1

Dþ k2

4k2
lnðn� 1Þ

� �
þ 1

2

� �
ð13Þ
where D is the maximal vertex degree of graph G. When adding edges, maximizing k2 is equivalent to minimizing the upper
bound of DðGÞ and �qðGÞ. This is why optimizing algebraic connectivity will improve all the three content spread metric we
defined above.

To better illustrate the connection between algebraic connectivity and the three content spread metrics proposed in this
paper, we present an example in Figs. 2, 3 and Table 3. Fig. 2 shows a simple connected network of 20 nodes and 19 edges.
Table 3 displays the contrast in the change of algebraic connectivity (k2ðLÞ), diameter (DðGÞ), expected content spread
(ECSðGÞ) and enhanced pairs (EnPairðGÞ) after adding two different edges. Fig. 3(a)–(d) shows algebraic connectivity and
the other three metrics as a function of adding an edge between two different endpoints in the network, where no constraint
is imposed on the edge to be added. Fig. 3(e)–(f) shows correlations between algebraic connectivity and ECSðGÞ; EnPairðGÞ
respectively, while restricting the added edge to be a 2-hop edge. We omit the correlation between algebraic connectivity
and diameter DðGÞ because in this case, DðGÞ ¼ 18 for any one 2-hop edge added.

3.4. Perturbations on algebraic connectivity

Calculating k2 of a matrix will incur a heavy computational cost of Oðn3Þ. Performing an exhaustive search in the edge
space and then calculating k2 for each outcome will be computationally prohibitive. Drawing on recent works on algebraic
connectivity and largest eigenvalue [11,29], we present in this part an approximate algorithm for efficiently calculating the
perturbation on algebraic connectivity by adding an arbitrary edge in a network.

Given a network represented as a graph G1 ¼ ðV ; EÞ, we define a candidate edge graph G2 ¼ ðV ; E2Þ, where E2 is the can-
didate edge set as defined previously. We denote the graph G0 ¼ ðV ; E0Þ where E0 � E2;v iðLÞ and v iðL0Þ are the ith smallest
eigenvectors of L and L0 respectively. We have:
v1ðLÞ ¼ 1 ð14Þ
8i; v iðLÞTv iðLÞ ¼ 1 ð15Þ
8i – j; v iðLÞTv jðLÞ ¼ 0 ð16Þ
The eigenvectors v2ðLÞ;v3ðLÞ; . . . ;vnðLÞ will span the subspace 1?, as pointed out by Kim and Mesbahi in [19]. Where
1? :¼ x 2 Rnj1T x ¼ 0 ð17Þ
and we have:
Lv iðLÞ ¼ kiðLÞv iðLÞ; 1 6 i 6 n ð18Þ
Using Eqs. (14) and (16), we get:
v iðLÞT Lv iðLÞ ¼ kiðLÞv iðLÞTv iðLÞ ¼ kiðLÞ ð19Þ



Fig. 2. A sample connected network of 20 nodes and 19 edges. a and b are 2 candidate edges waiting to be added.

Fig. 3. Network changes resulted by adding 1 edge to the network in Fig. 2.
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and
v iðLÞT Lv jðLÞ ¼ kiðLÞv iðLÞTv jðLÞ ¼ 0 ð20Þ
Since vðL0ÞTvðL0Þ ¼ 1 and vðL0ÞT 1 ¼ 0, we have:
v iðL0Þ ¼
Xn

i¼2

ci � v iðLÞ ð21Þ
and
v iðL0Þ
T � v iðL0Þ ¼

Xn

i¼2

Xn

j¼2

ci � v iðLÞT � v jðLÞ � cj ¼
Xn

i¼2

c2
i ¼ 1 ð22Þ
Finally we have:
v iðL0Þ
T Lv iðL0Þ ¼

Xn

i¼2

Xn

j¼2

ci � v iðLÞT � L � v jðLÞ � cj ¼
Xn

i¼2

c2
i � v iðLÞT � L � v jðLÞ ¼

Xn

i¼2

c2
i � kiðLÞP k2ðLÞ �

Xn

i¼2

c2
i ¼ k2ðLÞ ð23Þ



Table 3
Network changes resulted by adding 1 edge to the network in Fig. 2.

Add edge k2ðGÞ DðGÞ ECSðGÞ EnPairðGÞ

a(7-10) 0.0303 17 3.8574 154
b(4-14) 0.0621 11 4.3027 156
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Since Lnew ¼ Lþ L0, we can easily obtain
k2ðLnewÞ ¼ v2ðLnewÞT Lv2ðLnewÞ þ v2ðLnewÞT L0v2ðLnewÞP k2ðLÞ þ k2ðL0Þ ð24Þ
So maximizing k2ðLnewÞ can be relaxed to maximizing k2ðL0Þ. Note that E0 � E2, maximizing k2ðG0Þ is equivalent to selecting
edges from E2 that have the greatest impact on k2ðL2Þ. When removing an edge l ¼ ða; bÞ from G2, the Laplacian matrix for
the newly obtained graph is:
L2new ¼ L2� Al ð25Þ
where Al is the incidence matrix of edge l ¼ ða; bÞwith Aa;a ¼ Ab;b ¼ 1;Aa;b ¼ Ab;a ¼ �1 and other entries being 0. So the impact

of removing edge l on algebraic connectivity is Dl ¼ ðv2ðL2Þa � v2ðL2ÞbÞ
2, which happens to be the gradient of k2ðL2Þ to the

edge l ¼ ða; bÞ [11]. This result can also be derived in a more intuitive manner: if G2 is a large graph with a great number of
edges, removing one edge has only insignificant impact on its second eigenvector. Therefore we have:
k2ðL2newÞ ¼ v2ðL2newÞT L2newv2ðL2newÞ � v2ðL2ÞT L2newv2ðL2Þ ¼ v2ðL2ÞT L2v2ðL2Þ � v2ðL2ÞT Alv2ðL2Þ

¼ k2ðG2Þ � ðv2a � v2bÞ2 ð26Þ
where v2a and v2b are the ath and bth entries of vector v2ðLÞ in short.
By computing all the Dl and sorting them in a decreasing order, we obtain a ranking of the perturbation on algebraic con-

nectivity by adding an arbitrary edge.

3.5. Algebraic Connectivity Regularized Friend Recommendation (ACR-FoF)

Here we propose a novel friend recommendation algorithm ACR-FoF that balances recommendation relevance and con-
tent spread. For adding a new edge l connecting the node a and node b, we use an edge scoring function to rank the edges as
follows:
ScoreðlÞ ¼ ScoreFoFðlÞ þ af ðScoreACRðlÞÞ ð27Þ
The recommendation score for an edge l consists of two parts: (1) ScoreFoFðlÞ obtained from the FoF algorithm. The FoF algo-
rithm is based on the intuition that ‘‘a friend of my friend can probably be my friend and if a person shares many common
friends with me, then there is a great chance that he or she may also be my friend.’’ So here: ScoreFoFðlÞ = the number of com-
mon friends between node a and node b. (2) ScoreACRðlÞ shows the impact on algebraic connectivity k2 by adding an edge l. From

Eq. (26) we have: ScoreACR ¼ ðv2a � v2bÞ2. The regularization parameter a controls the contribution from the two parts. To
identify good edges which can improve content spread capability efficiently, we define the f ðScoreACRðlÞÞ as follows:
f ðScoreACRðlÞÞ ¼ logðScoreACRðlÞÞ ð28Þ
Using the logarithm function will effectively lower the scores of the edges that only make little change on algebraic connec-
tivity. As a result, the ranking scores from ACR-FoF can efficiency discriminate between good edges and bad edges. This char-
acteristic is demonstrated in our experiments. We summarize the above ranking algorithm in Algorithm 1.

Algorithm 1. Algebraic Connectivity Regularized Friend Recommendation

Input: The original social network graph, G; The candidate edges graph, G2; Parameter a
Output: Recommend order list of candidate edges List;
1: Obtain the Laplacian matrix L2 for G2;
2: Calculate the second smallest eigenvector v2 of L2;
3: Initialize all entries in rating matrix S to 0;
4: for each l ¼ ða; bÞ 2 G2 do
5: ScoreFoF = the number of common friends between node a and b;

6: ScoreACR ¼ ðv2a � v2bÞ2;
7: SðlÞ ¼ ScoreFoF þ a log ScoreACRð Þ
8: end for;
9: Sort all candidate edges by SðlÞ in decreasing order, and save the sequence in List;

10: return List;
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The ranking scores from ACR-FoF will lead to effective content spread by taking the algebraic connectivity into considera-
tion. Meanwhile, it ensures relevance in recommendation by both incorporating the FoF part into the ranking score and con-
straining the candidate edge set in 2-hop edges (i.e. only recommending friends of friends). This way, it balances the two
objectives by setting the appropriate regularization parameter a.

To recommend multiple edges, we use a greedy scheme instead of combinatorial optimization by selecting the top-k
edges ranked by ScoreðlÞ. The rationale behind this is that users are unlikely to accept all the recommendations as a whole,
i.e. they tend to accept some of the recommendations while rejecting others. This will make the combinatorial optimization
result a suboptimal solution. To better illustrate this situation, we present an example of a graph with 7 nodes on a line in
Fig. 4(a), and we will add three 2-hop edges to reduce the mean distance. The three blue lines in Fig. 4(a) are the result of
combinatorial optimization, while the red lines are selected by the greedy scheme. If all the three recommendations are
accepted, the three blue line will achieve the best performance. If recommendation success rate for each edge p < 1, the
situation can be tricky. We calculate the expected mean distance (EMS) for both solution, and show the Greedy to
Combinatorial EMS ratio under different p value in Fig. 4(b). The region where the EMS ratio is less than 1 is the region
the greedy scheme will achieve better performance. As we can see from Fig. 4(b), the greedy scheme will excel when
p < 0:6. In practice, when the number of the recommended edges are big, the recommendation success rate tends to be quite
low. This means the greedy scheme will produce better result with a much lower computational cost.

4. Experiments and result

In this section, we will evaluate the performance of our algorithm in: (1) improving content spread in a network and (2)
friend recommendation success rate. We perform our experiments in two different types of data sets: first in synthetic data
sets to test the algorithms’ capability in content spread and then in real social network data sets to test how different algo-
rithms perform in both content spread and friend recommendation. We will begin with the content spread capability experi-
ments in synthetic data sets first.

4.1. Content spread experiments

In this part, we compare our methods with existing algorithms to examine their effectiveness in improving content
spread capability of a network. First of all, we shall notice that ACR-FoF is a friend recommendation algorithm. So the pur-
pose of ACR-FoF is not to solely optimize content spread capability, but rather to achieve a good balance in boosting content
spread and recommending relevant friends. Thus in the experiments, our main purpose is to examine the content spread
capability of both the ACR algorithm and ACR-FoF, i.e. how much our friend recommendation algorithm will improve the
content spread. We will begin our description of the experiments with the data sets.

4.1.1. Data sets
As the algorithms are supposed to work on a connected network, we generate two types of connected networks: (1) RTG

Network and (2) 2-Core RTG Network.
RTG Network: Graphs generated by a Random Typing Generator bear much resemblance to real graphs such as social

networks [1]. Experiments on RTG networks can show how different algorithms will perform in real social networks. We
generate 20 RTG networks as described in [1],1 with the following parameter settings: W ¼ 1000, k ¼ 5, b ¼ 0:5, q ¼ 0:2,
isBipartite ¼ True, isSelfLoop ¼ True and numTimeTicks ¼ 100. The statistics of the generated RTG networks are summarized in
Table 4.

2-Core RTG Network: The RTG networks used in previous experiments are single-core networks, while real social net-
works are multi-core, i.e. consisting of multiple densely connected subgraphs. Thus the experiments in RTG networks cannot
differentiate whether the added edges will improve the connection within one specific core (increasing homophily), or
improve the connection within multiple cores (increasing homophily) or connect different cores (tending to reduce homo-
phily). So we add a random edge between 2 RTG networks to make a 2-Core RTG Network. Thus we obtain 10 2-Core RTG
networks from these 20 RTG networks. An example of the 2-Core RTG Network is shown in Fig. 5(c). The statistics for the
ten 2-Core RTG networks used in our experiments are summarized in Table 5.

4.1.2. Evaluation metrics
We will use the three metrics discussed previously to evaluate the algorithms’ impact on the content spread capability of

a social network. To highlight the improvement brought by different algorithms, we will use the improvement ratio on the
three metrics in the experiments. Thus the evaluation metrics finally used in the experiments are: (1) Improved Network
Diameter Ratio (INDR); (2) Improved Expected Content Spread Ratio (IECSR); and (3) Enhanced Pairs Ratio (EPR). The three
metrics are defined as follows respectively:
1 Codes download from www.cs.stonybrook.edu/	leman/pubs.html.

http://www.cs.stonybrook.edu/~leman/pubs.html
http://www.cs.stonybrook.edu/~leman/pubs.html
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Table 4
Statistics for RTG Networks.

Minimum Maximum Average

Points 311 412 369.2
Edges 436 514 479.25
Diameter 9 14 10.45
Mean distance 3.8114 4.3343 4.0277
Average degree 2.3669 3.1254 2.6110
Maximum degree 29.2269 35.8531 32.4995
Candidate edges 4373 7084 5639.3

(a) RTG Network1 (b) RTG Network2 (c) 2-Core RTG Network

Fig. 5. RTG Network and 2-Core RTG Network examples.

Table 5
Statistics for 2-Core RTG Networks.

Minimum Maximum Average

Points 689 785 738.4
Edges 926 1006 959.5
Diameter 13 16 14.6
Mean distance 5.0386 6.1876 5.6433
Average degree 2.4517 2.8338 2.6024
Maximum degree 54 79 66
Candidate edges 10,129 12,581 11,325
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INDR ¼ DðGÞ � DðGnewÞ
DðGÞ ð29Þ

IECSR ¼ ECSðGnewÞ � ECSðGÞ
ECSðGÞ ð30Þ

EPR ¼ EnPairðGnewÞ
nðn� 1Þ ð31Þ
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where G stands for the original graph and Gnew the new graph after adding the recommended edges. Dð�Þ; ECSð�Þ and EnPairð�Þ
are defined in Eqs. (3), (8) and (10) respectively. For each metric, higher values mean better performance.

4.1.3. Compared algorithms
To demonstrate the extent of improvement in content spread of our ACR algorithm, we compared with some of the state-

of-the-art algorithms. The algorithms tested in our experiments include:
ACR: Although we term our algorithm as algebraic connectivity regularized friends-of-friends, the regularization term

ACR (algebraic connectivity regularization) can be used separately to optimize the algebraic connectivity of a network as
follows:
ScoreACRðlÞ ¼ ðv2a � v2bÞ2 ð32Þ
where v2 is the second smallest eigenvector of L2.
LE: Eigenvalues of the adjacency matrix or the Laplacian matrix are actively explored in graph optimization problems.

Some recent works use the largest eigenvalue of the adjacency matrix to tune the network structure. Here we compare
the method in [31,26,29], which maximizes the Largest Eigenvalue (LE) of the adjacency matrix to improve the network con-
tent spread.
ScoreLEðlÞ ¼ ðvma � vmbÞ2 ð33Þ
where vm is the largest eigenvector of G.
RMPP: The Restricted Maximum Probability Path Model (RMPP) was proposed in [4] to improve content spread in a net-

work. Notice that by directly optimizing for ECSðGÞ of a network, RMPP can find a near-optimal solution by iteratively
calculating ECSðGÞ after adding an edge. However, this will incur expensive time cost, making it impractical in real
applications.
ScoreRMPPðlÞ ¼ ECSðGnewÞ � ECSðGÞ ð34Þ
where Gnew is graph after adding edge l to G.
FoF: Recommend the edge with the largest number of common friends.
ACR-FoF: Combine the weight of ACR and FoF using Eq. (27), where a is set to 0.5, and choose the edge with maximum

weight.
RAND: Randomly add edges.
We compare the algorithms’ performance in recommending top-k edges and show the change of the content spread

capability after adding all the k recommendations. The result of RAND is averaged over 10 runs.

4.1.4. Results and discussion
The experimental results for content spread are shown in Figs. 6–9. We also show three network examples after adding

2000 edges by three different algorithms (ACR, LE, RMPP), with newly added edges displayed in red color in Figs. 7 and 8. The
following observations and conclusions can be drawn from the experimental results:

(1) It can be seen from the experiments that ACR outperforms LE and RMPP in reducing the network Diameter. This can be
partly explained by Eq. (12), which indicates that increasing algebraic connectivity tends to reduce network diameter
DðGÞ. This is further verified by the examples in Figs. 7 and 8, where we can see ACR is more likely to connect external
pairs.

(2) The examples in Figs. 7 and 8 reveal that LE tends to improve the connection within a single core, while ACR and RMPP
will improve the connections in different cores. However, a closer observation into Fig. 8 reveals that ACR also tries to
connect different cores, while this is not observed in LE and RMPP. We can thus conclude that ACR will more likely
reduce homophily in a network comparing with LE and RMPP. The experimental results in Fig. 6 also confirms that
LE will have a poor performance in multi-core network since it tends to increase connection within a single core.
In contrast, both ACR and RMPP achieve better performance in 2-Core RTG Networks.

(3) The most important observation from the experiments is that ACR-FoF outperforms RAND in almost all the evaluation
metrics. Although the candidate edges are restricted to be 2-hop edges for friend recommendation, ACR-FoF’s super-
iority over RAND demonstrates that ACR-FoF can effectively improve content spread in a social network.

The computer we use to run the experiment has a 4-core 3.20 GHz CPU and 4 GB memory in total. Fig. 9 shows the time
needed to calculate scores for all the candidate edges in a network using RMPP, ACR and LE. On average, RMPP algorithm
needs 22.3027 s for one of the RTG Network test cases and 210.4734 s for 2-Core RTG networks, while ACR algorithm only
needs 0.0452 s and 0.2122 s, which is a significant improvement in terms of time complexity. The reason is that in ACR algo-
rithm, we only need to calculate the second smallest eigenvector v2 for once, then we can calculate the approximation term

ðv2a � v2bÞ2 in Oð1Þ time after adding a new edge to the original network, while in RMPP algorithm, we need to calculate the
approximate expected content spread (ECS) after adding a new edge, which needs Oðn2Þ time.
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Fig. 6. Content spread capability experiment on simulated datasets.

(a) ACR (b) LE (c) RMPP

Fig. 7. RTG Network after adding 2000 edges, blue edges are original connections and red edges are new ones. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

(a) ACR (b) LE (c) RMPP

Fig. 8. 2-Core RTG Network after adding 2000 edges, blue edges are original connections and red edges are new ones. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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4.2. Real social networks experiments

In this part, we experiment on real-world social network data sets to test the effectiveness of our algorithm in content
spread and recommending friends in social networks. We start with a description of the data sets.

4.2.1. Data sets
The data sets used in the following experiments are from Flickr and Twitter. As the networks used in our experiments are

supposed to be connected, we select 10 connected subgraphs from Flickr and Twitter data sets using breadth-first-search
(BFS) as follows: (1) starting with an empty node set; (2) randomly selecting a node and inserting it in into the empty node
set; (3) using breadth-first-search to reach a neighbor of the inserted node and with probability pselect ¼ 0:5 inserting this
neighbor node into the node set; and (4) continuing BFS search and inserting new nodes into the node set until it contains
more than 1000 nodes. We obtain 20 connected networks from the Flickr and Twitter data sets using these steps (10 from
each).

For each of the 20 connected network we obtained, we delete a subset of its edges and then run friend recommendation
algorithms to see whether these deleted edges are selected by the recommendation algorithms. The edges in a connected
network are deleted as follows: (1) randomly selecting 3 nodes that are mutually connected; (2) randomly deleting an edge
from the 3 edges connecting the 3 nodes; and (3) repeating the previous two steps until 500 edges are removed from a con-
nected network. For each of the 20 connected networks we obtained, we repeat the edge-deleting process 10 times to create
10 new connected networks. Thus finally we obtain 200 connected networks in our experiments. In total, we use 9805 dis-
tinct nodes in Flickr, and 10,175 distinct nodes in Twitter. The statistics are summarized in Tables 6 and 7.

4.2.2. Evaluation metrics
To evaluate the friend recommendation success rate, we use the deleted edges for each of the 200 connected networks to

calculate the Precision;Recall and F1 score as follows:
Precision ¼ jEr \ Edj
jEr j

ð35Þ

Recall ¼ jEr \ Edj
jEdj

ð36Þ

F1 ¼
2� Precision� Recall

Precisionþ Recall
ð37Þ
where Ed is set of formerly deleted edges, Er is the set of recommended edges, and function jAj is the number of elements in
set A. Thus we can use these metrics to evaluate the accuracy of the recommendations. Also Improved Network Diameter
Ratio (INDR), Improved Expected Content Spread Ratio (IECSR) and Enhanced Pairs Ratio (EPR) need to be tested for the con-
tent spread capability.

In the real social networks experiments, we need to consider both improvement in content spread capability and friend
recommendation success rate. So we only add a new edge to the network if it is one of formerly deleted edges, which means
a successful recommendation. The content spread capability is only calculated on the success edges.

4.2.3. Compared algorithms
In this section, we will make comparisons among the following recommendations algorithms, which are the combina-

tions between content spread algorithms and the traditional friend recommendation method. The algorithms tested in
our experiments include:

FoF: We test the traditional friend recommendation method friends-of-friends, which recommend new friends based on
the number of mutual friends. For each candidate edge l, we use the number of mutual friends between the two end nodes i; j
of the edge l to calculate its FoF score as follows:
ScoreFoFðlÞ ¼ jfxjðx; iÞ 2 E and ðx; jÞ 2 Egj ð38Þ
The following are regularized friend recommendation algorithms, where the three content spread algorithms are used as
the regularizers.

ACR-FoF: FoF is regularized by ACR as follows:
ScoreACR�FoFðlÞ ¼ ScoreFoFðlÞ þ a log ScoreACRðlÞð Þ ð39Þ
LE-FoF: FoF is regularized by LE as follows:
ScoreLE�FoFðlÞ ¼ ScoreFoFðlÞ þ a log ScoreLEðlÞð Þ ð40Þ
RMPP-FoF: FoF is regularized by RMPP as follows:
ScoreRMPP�FoFðlÞ ¼ ScoreFoFðlÞ þ a log ScoreRMPPðlÞð Þ ð41Þ



Table 6
Statistics for Flickr.

Minimum Maximum Average

Nodes 1009 1272 1085.9
Edges 2442 5970 3764.3
Diameter 5 8 6.1300
Mean distance 2.7552 3.5812 3.0095
Average degree 4.7510 10.5664 6.8980
Maximum degree 170 465 389.66

Table 7
Statistics for Twitter.

Minimum Maximum Average

Nodes 1007 1769 1192.2
Edges 5205 27,133 13,804
Diameter 3 9 5.6700
Mean distance 2.1368 3.1311 2.6169
Average degree 9.8580 39.3842 22.5183
Maximum degree 335 1265 654.28
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Fig. 10. Content spread capability experiment on real-world datasets.
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where the regularization parameter a is set to 0.5 for all algorithms and we use the same method in Content Spread
Experiments to calculate ScoreACRðlÞ; ScoreLEðlÞ and ScoreRMPPðlÞ, as Eqs. (32)–(34).
4.2.4. Results and discussion
The results are shown in Figs. 10 and 11. First thing we notice in the experimental results is that ACR-FoF excels in all the

three content spread metrics, with obviously leads over other algorithms observed. This confirms our assumption that the
real social network is multi-core and ACR-FoF can achieve best performance in multi-core network.

We can also see that, traditional friend recommendation algorithms such as FoF do not take content spread into con-
sideration and thus will result in poor performance on the 3 evaluation metrics for content spread capability, as shown in
Fig. 10. From the experimental results, we can also see that the three regularized algorithms gain more improvements over
FoF in Flickr data set than in Twitter data set. The reason for that can be found from the statistics in Tables 6 and 7, which
shows that Twitter data set is more densely connected and thus adding new edges will have less effect. Another important
result from the experiments is that ACR-FoF gains a significant improvement in content spread capability than FoF with only
a very tiny loss in recommendation success rate.
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Fig. 11. Recommendation success rate.
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Fig. 12. Content spread capability vs. regularization parameter a.
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After taking logarithms on the three regularizers, FoF and the three regularized recommendation algorithms show rela-
tively similar performance in friend recommendation success rate, in terms of Precision, Recall and F1 Score. The reason we
take logarithms on the regularizer is that we consider success rate as the most important objective in recommending friends
in social network. The experimental results also verify that we have achieved a good balance between friend recommenda-
tion success rate and content spread capability in our algorithm.

It will be interesting to examine how the performance of the above algorithms change with varying regularization
parameter values, so as to check the algorithms’ sensitivity to a. We performed experiments with a varying from 0.1 to 2.
Figs. 12 and 13 shows how the performance of three regularized FoF methods vary with different a. Note that here the ver-
tical axis is Improvement Percentage, the ratio between the size of the area under each curve and the size of the area under FoF
curve, which we use here to characterize the general performance of a specific algorithm under a certain a value. The value
more than 1 means that this algorithm is better than FoF on testing metric, and higher values mean better performance.
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Fig. 13. Recommendation success rate vs. regularization parameter a.
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From Fig. 12 we can see that as a increases, all the three algorithms show steady increase in content spread capabilities as
indicated by IP-INDR, IP-IECSR and IP-EPR. Among them, ACR-FoF achieves the largest improvement. We can also obviously
see from the experimental results that ACR-FoF can achieve more significant improvement than the other two algorithms in
content spread in more densely connected networks such as Twitter.

From Fig. 13 we can see that as a increases, all the three algorithms experience some drop in recommendation success
rate, as indicated by IP-Precision, IP-Recall and IP-F1. The difference between Flickr and Twitter data set can once again be
attributed to varying densities of connections in two social network data sets. For a more densely connected social network
such as Twitter, the friends-of-friends part of the score tends to be high and thus is less affected by the regularization term.

It can be seen when a ¼ 0:5, the loss in recommendation success rate is tiny but the improvement in content spread is big.
Thus in the content spread experiments and recommendation experiments, we set a ¼ 0:5.
5. Conclusions and future works

In this paper,we present a novel Algebraic Connectivity Regularized Friend Recommendation algorithm (ACR-FoF) for
recommending friends in social networks. Different from traditional recommendation methods that mainly consider success
rate in recommendation, ACR-FoF takes into account both recommendation success rate and content spread in a social net-
work. Experimental results on synthetic data sets and real social network data sets show that ACR-FoF achieves significant
improvement in content spread at a very tiny loss on recommendation accuracy. We believe ACR-FoF can greatly enhance
the value of a social network by boosting its power in spreading contents.

There are several interesting problems to be investigated in our future work: (1) The expected content spread (ECS(G))
proposed in this paper is based on the information cascade (IC) model. But optimization based on algebraic connectivity
is not limited to IC model. It will be interesting to generalize our work to other information dissemination models by con-
sidering weighted assignment of propagation probability among nodes, or defining new content spread metrics and deriving
their relations to the algebraic connectivity, etc. (2) It will be meaningful to explore more on how local and global network
structures are related to the algebraic connectivity of the network. We can further refine our algorithm to improve content
spread by more explicitly considering the underlying network structure.
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